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Abstract

An open architecture manufacturing system pursues to integrate manufacturing components on a single platform. Therefore, a
particular component can be easily added and/or replaced. In this paper, a modular and object-oriented approach for the PC-based
open robot control (PC-ORC) system is investigated. A standard reference model for controlling robots, which consists of a
hardware platform, an operating system module, and various application software modules, is first proposed. Then, PC-ORC

system, which can reconfigure the control system in various production environments, is developed. The PC-ORC is constructed
based upon the object-oriented method. Hence, it allows an easy implementation and modification of various modules. The PC-ORC
consists of basic software, application objects, and additional hardware devices on a PC platform. Finally, by applying the proposed

PC-ORC to a SCARA robot, the performance of the PC-ORC is examined. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A modern manufacturing system should have the
capability to meet consumer’s various demands to new
products within a certain designated time. Also, it
should be able to accommodate the rapid development
of computer technologies. Therefore, it pursues the open
modular structure, which permits the flexibility, the integ-
rability, and the concurrency of diverse manufacturing
elements [1–9]. Under the prevalence of various manu-
facturing equipment and software resources, an open
manufacturing system aims at an easy integration of multi-
vendor equipment under a single standard platform.
Even though most current automation equipment

such as robots and NC machine tools used in the
manufacturing industries are programmable and may
have various functions related to a given task, they are
still characterized by their own control schemes, i.e.,
vendor-oriented control architectures. Therefore, when
a number of machines from different vendors are

combined, not only the lack of flexibility due to the
incompatibility problem but also the waste of resources
and the inefficiency due to duplicated peripherals are
apparent.
In order to deal with the incompatibility problem

arising from various vendors, a number of organizations
have proposed the establishment of standards for the
control systems used in the automation area. Also, it
was acknowledged that too specific standards might
restrict the willful initiations from vendors for new
technologies. But, due to the reason that some existing
hardware and software may have to be abandoned, such
proposals didn’t get much attention throughout the
manufacturing society.
As an alternative approach, researchers have focused

on developing an open architecture control system,
which requires its control environment to conform to an
open technology. As far as integration and inter-
operability are concerned, this approach does not force
all manufacturing vendors to conform to one standard.
Instead, this approach uses existing resources and
realizes user-specific functions. One of the successful
results along this approach is the Open Modular
Architecture Controller (OMAC) instigated by GM,
Ford, etc. The OMAC specifies the requirements for the
manufacturing equipment used in the automotive
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industry [7]. In the machine tool industry, the Open
Systems Environment for Control (OSEC) has been
suggested as an open architecture reference model for
open architecture NCs and FA systems [8]. Also,
European countries proposed the Open System Archi-
tecture for Controls within Automation systems (OSA-
CA) as a reference platform for FA systems [9].
While the main stream in the research area of the

open architecture system was on NC machine tools, the
research for open robot controllers is getting more
attention recently, because robots are used in many
applications and are directly related to the production
efficiency. Also, the virtual simulation environment for
controlling as well as for configuring robot systems
enables now the rapid increase of production efficiency
[10,11].
As illustrated in Fig. 1, the structure of an industrial

robot system, in general, includes: task control, manip-
ulator, manipulator sensor interface, memory, sequen-
cer, servo controller, external sensor interface,
computational unit, auxiliary device interface, path
generator, and power unit [13]. These components can
be categorized into two major modules, the management
module and the servo module, based upon the necessity
of real time operation. The management module does
not require the real time operation, because it manages
the robot from the functional point of view by simply
executing user’s commands. On the other hand, the servo
module concerns the control of the positions and speeds
of robot arms, thus it requires the real time operation.
This paper presents a PC-ORC system, which is based

upon the OSACA reference model. The proposed
system incorporates a commercial simulation environ-
ment into its architecture for easier programming and
verification. To enhance the modularity and reusability,

the object-oriented technique is utilized in constructing
the PC-ORC. Finally, in order to demonstrate the
applicability of the PC-ORC, the proposed configura-
tion is applied to an industrial SCARA robot.
This paper is structured as follows: In Section 2,

a new reference platform for the PC-ORC is proposed.
The characteristics of component modules are de-
scribed. In Section 3, by analyzing the structure of an
industrial robot, implementation strategies for the PC-
ORC are described. In Section 4, a new approach for the
robot motion program and a new conceptual user
interface scheme are described. In Section 5, by applying
the proposed PC-ORC to a SCARA robot, the
applicability and the performance of the PC-ORC are
examined. Finally, Section 6 describes the concluding
remarks.

2. A Reference model for the PC-ORC

As depicted in Fig. 2, a new reference model for the
PC-ORC, based upon the OSACA reference model [9],
is proposed. The overall structure in Fig. 2 is basically
identical to the OSACA system. However, because
industrial robots vary from vendor to vendor, the
management module configures not only hardware
specifications but also retrieves necessary information
regarding a particular robot system from the database.
This new structure focuses on providing a one-stop
solution for model building, controller design, and
numerical simulations for the ease of real-time imple-
mentation. Three main parts of this model are a
hardware platform, an operating system module, and
application software modules. The role of these three
parts is briefly explained.

Fig. 1. Various components of a typical industrial robot system.
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2.1. Hardware platform

A typical hardware platform consists of one (or more)
processor(s), I/O units for the communication with
external devices, data memory, and peripheral devices
for user interface. In order to achieve the openness of
the hardware platform, its components should comply
with standardized specifications. However, since hard-
ware technologies are changing rapidly, the openness of
the hardware platform should be accomplished in their
drivers, not by the hardware itself, to ensure the low cost
and easy use.
PCs have been used as a standard platform for open

architecture control system. The use of PC is expected to
increase rapidly. Main reasons for the wide spread PC-
based controls are the emergence of control network
standards for motion and the I/Os that allow easier
integration of various peripheral devices. Also, the easy
modification and extension of operation software is
another important factor for the PC-based control
[2,12].

2.2. Operating system module

The operating system module should provide the
hardware platform with the accessibility to the hard-
ware, the application software, and application pro-
gramming interface (APIs) developed by other vendors.
In order to utilize a single-processor PC for the open
architecture control system, the operating system
module should be a real time operating system (RTOS).
Core differences between the RTOS and the Windows
(CE, NT, etc.)/DOS are the management and allocation
method of the CPU time, responding method to
interrupt, and resource sharing method during the
operation of mechanical devices.

2.3. Application software modules

In an open architecture control system, the functions
of the application software module should be allowed to
be extended or to be modified. They are also required to
satisfy the object-oriented characteristics to exchange
data among the functions. Due to these requirements,
the application software module is decomposed into
four sub-modules: management, API, network, and
control objects.
(1) Management: One essential characteristics of the

open architecture control system is the ability of
reconfiguration. The management object deals with this
reconfiguration problem of the open architecture con-
trollers. The first step of the reconfiguration process is to
analyze the functions and performances of the various
system components, as shown in Fig. 2. Then, a
configuration order is generated by setting new values
for the variables in the open architecture reference
model by using the configuration editor. An appropriate
value of the variable for the specified control system is
fetched from the database that contains information
about the configuration of the various manufacturing
devices. This reconfiguration function is essential to the
open control system to ensure that the system is able to
cope with the manufacturing environment changes.
(2) API: The manufacturing environment requires the

reconfiguration of the existing manufacturing devices
and the addition of new ones according to the change of
products and production processes. To satisfy this
requirement, API provides the common interface to
the existing hardware or software so that the application
programs can be easily modified. That is, API should
allow the ‘plug and play’ capability.
(3) Network: The network performs as a data bus

when reading the status of an object or assigning an
appropriate value for some necessary movement. There
are two entities using the network: The client delivers a
command to perform an appropriate function and the
server executes the command requested by the client [1].
(4) Control object: The control objects mean the

components used in controlling the real manufacturing
devices from the software point of view. By assigning
new values to the attributes of these control objects, the
entire control system can be constructed and modified as
required for the new manufacturing environment. Also,
the control object should be hardware independent.

3. Implementation of the PC-ORC

This section presents the strategy to implement the
standard reference model for the PC-ORC. More
specifically, implementation strategies for the operating
system module and the application software module are
given by examining the structure of an industrial robot.

Fig. 2. A proposed standard reference model for the PC-ORC.
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Also, the integration method of control objects is
described.

3.1. Implementation of the operating system module

As an operating system of the PC-ORC, Windows NT
is adopted because of its stability on PC platforms.
However, Windows NT has some shortcomings in real-
time operation [14], because it is difficult to guarantee
the computation cycle of within several milliseconds for
the servo control of periodic sensor sampling and
control command calculation. In order to circumvent
this problem, the motion controller of a servo board is
dedicated for the servo system, while Windows NT
handles the tasks that require relatively slow responses
in robot motion planning and path generation.
In this paper, as the dedicated servo system, a motion

controller of PMAC with a dual-port RAM is used [15].
The dual-port RAM acts as a buffer between the PMAC
and Windows NT and allows downloading the robot
path data from the PC memory into the buffer memory
of PMAC at high speed [15]. During the servo system
operation, the controlled values of each joint and the
overall status of the servo system are fed back to
Windows NT. The buffer memory is capable of storing
2000 joint values, and its size is adjustable if needed.

3.2. Implementation of the application software module

As a methodology for developing application soft-
ware modules, an object-oriented modeling paradigm is

employed, which defines individual module components
as objects and assigns appropriate attributes to the
defined objects [16]. As shown in Fig. 3, classes of the
defined objects and the relationship among the classes
are represented by using the object-oriented modeling
techniques (OMTs). In Fig. 3, ‘}’ denotes the aggrega-
tion relation and ‘}’ means the logical link [17,20].
The Sequencer object converts the commands re-

ceived from the ORIS editor (to be described in Section
4) to the format that can be utilized by the related
objects. This task is completed with the help from the
TaskControlConverter object and the MotionControl-
Converter object. The TaskControlConverter object
transforms the task information transmitted by the
Sequencer object into the commands that can be
recognized and executed by the TaskControl object.
Meanwhile, the MotionControlConverter object gener-
ates a file to be downloaded into the PMAC buffer. The
TaskControl object interacts with the Point object, the
PathGeneration object, and the InverseKinematics
object in order to generate the simulation information
for the Simulation object. In addition, it receives an
executable robot trajectory as a result of the trajectory
modification via the 3D graphic simulation. The Point
object stores the position and orientation of a body in
the 3D space with respect to the world coordinate. Also,
this object is responsible for teaching a virtual robot for
program verification. The PathGeneration object gen-
erates the trajectory of the robot end-effector with a
series of stored position/direction information. In case
that the tool position is expressed in the world

Fig. 3. Class structure of the application software module.
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coordinate, the InverseKinematics object transforms the
tool position into the joint coordinate.
The Simulation object provides a virtual simulation

environment where the intended robot tasks can be
examined before applying to the real robot. To this end,
this object has functions to model robots and work cells,
to check for a possible collision, and to handle error
conditions. The Simulation object consists of two sub-
objects (not shown in Fig. 3); the CIMulation made in
CODE [18] and the interface dialog box developed in
C++. The CODE is commercial software for robot
simulation and its API provides the interaction between
these two objects.
The MotionControl object deals with the environ-

ment configuration task of the actuators installed in a
robot system as well as the verification of the actuator
status. This object interacts with various motion
controllers such as PMAC, MEI, and MMC via the
MotionControl object that is responsible for hardware
configuration such as adjusting motor outputs and
gains. Also, the MotionControl object interacts with the
Feedback, Safety, Homing, Output, and Servo objects
whose functions are illustrated in Fig. 3.
The I/O control object receives or sends signals from/

to the peripheral equipment (conveyor, NC machine,
and cell controller) through input or output ports,
respectively. The ExternalSensorControl object accepts
external status of a robot system from the external
sensors and converts them into the internal format.

3.3. Integration of application software modules

The PC-ORC has been developed through the
integration of application objects, the CODE system,
and hardware including PMAC, MEI, and MMC after
completing the PC hardware platform and the operation
system module. Also, the TCP/IP protocol socket
provided in C++ is used to read and write the data
among objects of the application software module. This
approach employing the TCP/IP sockets aims to
guarantee the open architecture for adding and modify-
ing objects. Even though the TCP/IP protocol is
functionally limited compared with the Manufacturing
Automation Protocol/Manufacturing Message Specifi-
cation (MAP/MMS), it is widely accepted in many areas
because it is inexpensive and technically very mature.
Moreover, in case of a distributed environment where
objects are handled in different computers, the combina-
tion of Ethernet and TCP/IP is readily available for
communication among objects only with a server
program. Fig. 4 shows such a server program, in which
each application object (i.e., client) is represented in a
dialog box. As shown in Fig. 5, the PC-ORC includes a
configuration editor, which configures the attributes of
each object with TCP/IP. Fig. 6 shows the overall
structure of the PC-ORC.

4. Robot programming for the PC-ORC

4.1. Open robot instruction set

Current approaches to robot motion programming
are classified into two major methods [19]. One
approach is the teach-and-playback method, which uses
an on-line teach pendant. The other approach is to use
an off-line high level programming language. The
advantages of the teach-and-playback method are that
it requires only a relatively small memory space to
record positions and that it is simple to learn and
suitable for simple tasks. However, the main disadvan-
tage is that it is difficult to integrate sensory feedback
information into the robot program. In addition, if the
task is changed, the whole manufacturing system should
be interrupted during the robot programming. On the
other hand, the off-line approach can deal with the
programs for complicated tasks, while it requires
operator’s expertise and experience in dealing with the
robot language.
In order to overcome these problems, the Open Robot

Instruction Set (ORIS) is proposed in this paper. The
ORIS is based on a format similar to the syntax of
English language, which allows the instruction to be
easily understood. As shown in Table 1, there are four
command units for the ORIS.
(1)Move control command unit: This command unit is

used to describe the motion of a robot end-effector. The
commands are classified into four categories according
to four types of basic motions: linear interpolation
motion, joint interpolation motion, continuous path
motion, and gripper motion.
(2) Configuration control command unit: The config-

uration commands are used to define its configuration
such as maximum joint speed and acceleration and
various control modes.
(3) Logic device control command unit: A robot

must be able to communicate with other auxiliary
devices. The logic device control commands provide
means for setting, resetting, and toggling through a
specific communication line that is connected with
sensors and actuators. In addition, the commands for
operating a vision system are included in this command
unit.
(4) Program control command unit: The program

control commands are necessary in dealing with
problems associated with an unexpected event and an
exceptional condition during the robot operation. These
commands provide means to control the program flow
like conditional branches in a high-level computer
language.
The ORIS has been implemented in the object-

oriented programming (OOP) language C++. Each
object contains data structures and operations that
express the behavior of the object. All the entities
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Fig. 4. Client-server characterization of the application software module.

Fig. 5. Configuration editor of the PC-ORC.
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involved in the robot system are represented as objects.
The OOP features of polymorphism, inheritance,
abstraction and data encapsulation were instrumental
in the development of the ORIS, in such a way that new
commands can be easily added without affecting other
commands.
Fig. 7 shows the ORIS Editor where a robot motion

program can be developed using the ORIS commands.
The List Box (three boxes on the top in Fig. 7) shows
various commands in a hierarchical structure. The Edit
Box (the box in the second row of Fig. 7) is used for the
creation of a robot motion program, displaying the
sequence of a robot motion. The program can be written
by selecting an appropriate command in the List Box,
which, in turn, opens child windows for required
parameters. Furthermore, by using the line command
input line box, the user who is familiar with the ORIS
can directly type the commands. This type of interactive
input via GUI allows users to conveniently construct
robot programs.

4.2. Conversion of robot motion program

The robot motion program written in the ORIS
format needs a conversion into the appropriate formats
for related objects. The robot motion program is
classified according to the command unit type and

stored into the proper fields of the database. By using
predefined conversion rules, these motion programs are
transformed into the sequence of commands expressed
in terms of related library, CODE API, and PMAC.
Then, these transformed commands are used to directly
drive the control objects. Fig. 8 shows an example of the
conversion process. This conversion process is con-
ducted by the TaskControlConverter and MotionCon-
trolConverter objects.

5. PC-ORC application to a SCARA robot

To order to demonstrate the applicability of the PC-
ORC, the developed system has been applied to a
SCARA robot. The performance of the PC-ORC can be
evaluated from two different aspects. The first aspect is
to examine how easy system modifications are. To this
end, a vision system is added to the existing robot
control system developed with the PC-ORC. The second
aspect is to examine the performance of the real time
control.

5.1. Hardware construction

Fig. 9 depicts the hardware structure of the PC-ORC,
which includes a hardware platform PC, a motion

Fig. 6. Components of the PC-ORC.
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controller PMAC, and a vision board. Fig. 10 shows the
actual system components.

5.2. Software construction

(1) Reconfiguration environment and motion program:
Attributes of control objects are reestablished to be
suitable for the SCARA robot system using the
Environment Configuration Editor, and the hardware
and operation commands associated with the vision
systems are added. These reconfiguration and system
modification tasks are done by specifying the character-
istics of the related hardware such as servo driver and
vision system. Therefore, this reconfiguration allows the
PC-ORC to be applied to various types of robot systems
and manufacturing environment. To evaluate the

performance of the integrated control system, an
example task is executed as follows:

* The PC-ORC obtains image information from the
vision system, downloads them into memory, and
extracts the robot trajectory.

* Based on this trajectory, the robot path is generated
by applying the appropriate coordinate transforma-
tion.

* The virtual simulation environment takes and modi-
fies the given robot path, and generates the data file
which is downloaded into the buffer of PMAC.

* The path information stored in the buffer is retrieved
to drive the periodic servo-loop on PMAC.

* The execution results of the PMAC are fed back to
PC.

Table 1

ORIS commands

Commands Command unit

Move control command unit

Linear interpolated motion MoveTo MoveTo Tool(gripper tcf) to TargetPoint(point name)

MoveNear MoveNear Tool(gripper tcf) relativeto TargetPoint(point name)

with Offset(x,y,x, roll, pitch, yaw )

MovePath MovePath Tool(gripper tcf) according to Path(Path name)

with Offset(x, y, z, roll, pitch, yaw)

MoveCircle MoveCircle Tool(gripper tcf) to TargetPoint(point name)

CP motion Continous path generation CP Generation(Source, File Name)

Joint interpolated motion MoveSingleAxis MoveSingleAxis Joint(JointNum) with Const(value)

MoveAllAxes MoveAllAxes Joints(Joint 1, Joint 2, Joint 3 . . .)
with Const(value 1, value 2, value 3 . . ..)

Gripper motion Open Open Gripper(gripper name) with Const(value)

Close Close Gripper(gripper name) with Const(value)

Configuration control command unit

Set Set Mode(joint/linear)

Set JointSpeed(value)

Set TipSpeed(value)

Set ScrewSpeed(value)

Set ScrewAccel(accel value, decel value)

Set JointAccel (joint num, accel rise, accel fall)

Logic device control command unit

Vision Operation Commands Board Initialize(address, value)

Capture Image(value)

Prefilter(value)

Detect boundary(value)

Erosion boundary(value)

Save Data(File name)

Send Send Signal(signal num, value)

Get Get Signal(signal num)

Wait Wait Signal(signal num, compare value, timeout value)

Program control command unit

OnState OnState(condition) � stop/continue

IfThen IfThen(condition compare) � (other command unit)

While While(condition) � exit
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Fig. 8. An example of motion programming using the ORIS.

Fig. 7. A dialog box of the motion program editor.

Fig. 9. Hardware configuration of the PC-ORC applied to a SCARA

robot.
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(2) Virtual simulation using the CODE: A virtual robot
and an operation environment created with 3D graphics
are needed for off-line teaching, path planning, simula-
tion, and performance evaluation. For this purpose, the
PC-ORC provides a simulation environment that
interacts with the CODE system. As shown in Fig. 11,
a virtual SCARA robot and its operation environment

are modeled using the CODE, and simulated according
to the set of robot motions specified by the operator.
During the simulation, the robot path is updated and
consequently sent to the PMAC for motion control.
(3) Performance evaluation: The PC-ORC is able to

replace the closed architecture control system of the
SCARA robot with the PC-ORC. In addition, it is
relatively easy to integrate a vision system. Fig. 12 shows
the detailed performance of the PC-ORC and a vision
system. Fig. 12(a) illustrates the image information
obtained from the vision system, part (b) shows the
trajectory to be followed, which is extracted from the
image information, and part (c) depicts the actual robot
path generated by the SCARA robot. Figs. 13 and 14
show response performances of the first and second axes

Fig. 10. Pictures of the PC-ORC with a SCARA robot.

Fig. 11. A virtual SCARA robot configured with the CODE system.

Fig. 12. Trajectory extraction process and the actual trajectory

obtained with the PC-ORC.
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or joints, respectively. These results demonstrate that
the PC-ORC can be applied to the real time control of
an industrial robot. Also, it is found that the virtual
simulation can lead to the enhanced efficiency of robot
task planning and adaptation to the new manufacturing
environment.

6. Conclusions

This paper describes an open control environment,
the PC-ORC, which integrates the various control
functions of industrial robot control systems into a
single unified environment along with its evaluation.
The PC-ORC is constructed by implementing object-
oriented application software and commercial software
on a standard PC platform. Since the PC-ORC is based
on a PC and implements the software modules and
objects by using object-oriented paradigm, it provides
the development environment for rapidly building a new
robot control system. In addition, the PC-ORC allows
the easy integration and reuse of hardware and software.
Because the motion and external sensor controller cards
are installed and operated on the PC platform, however,

the control system shows the limited stability and
robustness compared with the closed architecture
control system. In the near future, it is expected that
an operating system with more stability and capability
can make the open architecture control system applic-
able to the real industrial manufacturing environment.
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